MTECH PROJECTS
Hybrid Random/Deterministic Parallel Algorithms for Convex and Nonconvex Big Data Optimization We propose a decomposition framework for the parallel optimization of the sum of a differentiable (possibly nonconvex) function and a nonsmooth (possibly nonseparable), convex one. The latter term is usually employed to enforce structure in the solution, typically sparsity. The main contribution of this work is a novel parallel, hybrid random/deterministic decomposition scheme wherein, at each iteration, a subset of (block) variables is updated at the same time by minimizing a convex surrogate of the original nonconvex function. To tackle huge-scale problems, the (block) variables to be updated are chosen according to a mixed random and deterministic procedure, which captures the advantages of both pure deterministic and random update-based schemes. Almost sure convergence of the proposed scheme is established. Numerical results show that on huge-scale problems the proposed hybrid random/deterministic algorithm compares favorably to random and deterministic schemes on both convex and nonconvex problems.