More Videos...
 

I/O Performance Modeling for Big Data Applications over Cloud Infrastructures

I/O Performance Modeling for Big Data Applications over Cloud Infrastructures Big Data applications receive an ever-increasing amount of attention, thus becoming a dominant class of applications that are deployed over virtualized environments. Cloud environments entail a large amount of complexity relative to I/O performance. The use of Big Data increases the complexity of I/O management as well as its characterization and prediction: As I/O operations become growingly dominant in such applications, the intricacies of virtualization, different storage back ends and deployment setups significantly hinder our ability to analyze and correctly predict I/O performance. To that end, this work proposes an end-to-end modeling technique to predict performance of I/O–intensive Big Data applications running over cloud infrastructures. We develop a model tuned over application and infrastructure dimensions: Primitive I/O operations, data access patterns, storage back ends and deployment parameters. The trained model can be used to predict both I/O but also general task performance. Our evaluation results show that for jobs which are dominated by I/O operations, such as I/O-bound MapReduce jobs, our model is capable of predicting execution time with an accuracy close to 90% that decreases as application processing becomes more complex.

Recent Projects

More +