More Videos...
 

Real-Time Big Data Analytical Architecture for Remote Sensing Application

Real-Time Big Data Analytical Architecture for Remote Sensing Application The assets of remote senses digital world daily generate massive volume of real-time data (mainly referred to the term “Big Data”), where insight information has a potential significance if collected and aggregated effectively. In today’s era, there is a great deal added to real-time remote sensing Big Datathan it seems at first, and extracting the useful information in an efficient manner leads a system toward a major computational challenges, such as to analyze, aggregate, and store, where data are remotely collected. Keeping in view the above mentioned factors, there is a need for designing a system architecture that welcomes both real-time, as well as offline data processing. Therefore, in this paper, we propose real-time Big Data analytical architecture for remote sensing satellite application. The proposed architecture comprises three main units, such as 1) remote sensing Big Data acquisition unit (RSDU); 2) data processing unit (DPU); and 3) data analysis decision unit (DADU). First, RSDU acquires data from the satellite and sends this data to the Base Station, where initial processing takes place. Second, DPU plays a vital role in architecture for efficient processing of real-time Big Data by providing filtration, load balancing, and parallel processing. Third, DADU is the upper layer unit of the proposed architecture, which is responsible for compilation, storage of the results, and generation of decision based on the results received from DPU. The proposed architecture has the capability of dividing, load balancing, and parallel processing of only useful data. Thus, it results in efficiently analyzing real-time remote sensing Big Data using earth observatory system. Furthermore, the proposed architecture has the capability of storing incoming raw data to perform offline analysis on largely stored dumps, when required. Finally, a detailed analysis of remotely sensed earth observatoryBig Data for land and sea area are provided usin- Hadoop. In addition, various algorithms are proposed for each level of RSDU, DPU, and DADU to detect land as well as sea area to elaborate the working of an architecture.

Recent Projects

More +